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Abstract

Following a suggestion of Tanenbaum (Electron. J. Combin. 7 (2000) R43) we introduce the notion of competition
polysemic pairs of graphs. A pair of (simple) graphs (Gi,G2) on the same set of vertices V' is called competition
polysemic, if there exists a digraph D = (V,4) such that for all w,v €V with u # v, uv is an edge of G if and only
if there is some w € ¥V such that uw €4 and vw € A4 and wv is an edge of G, if and only if there is some w & V' such
that wu € A and wv € A. Our main results are a characterization of competition polysemic pairs (Gi,G2) in terms of edge
clique covers of G| and G, and a characterization of the connected graphs G for which there exists a tree 7 such that
(G, T) is competition polysemic.
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1. Introduction

We consider finite simple graphs G = (V,E) with vertex set ¥ and edge set E. A clique of G is the vertex set of a
(not necessarily maximal) complete subgraph of G. An edge clique cover of G is a collection € of cliques such that for
every edge uv € E some clique in % contains both vertices u and v. A block of G = (V,E) is a maximal 2-connected
subgraph of G and a vertex u € V' for which G — {u} = G[V/\{u}] has more components than G is a cutvertex.

We also consider finite digraphs D = (V,4) with vertex set V' and arc set 4 which may contain loops but no multiple
arcs. An arc in D from u to v will be denoted by uv and the positive (negative) neighbourhood of a vertex ve V is
Ni(u)y={veV|uwed} (N, (u)={veV|vweA}). For further definitions we refer to [3].

In [11] Tanenbaum introduced the notion of bound polysemy. He called a pair (Gi,G,) of graphs Gy = (V,E;) and
G, =(V,E>) on a common set of vertices V' bound polysemic, if there exists a reflexive poset P = (V, <) on the set V
such that for all u,v €V with u # v, uv € E; if and only if there is some w € V' such that u < w and v < w and v € E;
if and only if there is some w€ V such that w <u and w < v.

In this situation the graphs G; and G are called the upper bound graph and the lower bound graph of P, respectively.
Upper bound graphs were introduced by McMorris and Zaslavsky in [7] (cf. also the survey [6]).

At the end of [11] Tanenbaum poses the problem of generalizing bound polysemy to competition polysemy using
digraphs instead of posets. We will do so in the present paper. Consequently, we call a pair (G, G2) of graphs G1=(V,E))
and G> = (V,E>) on a common set of vertices V' competition polysemic, if there exists a digraph D = (V,4) on the same
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set of vertices such that for all u,v € V with u # v, uv € E, if and only if N3 (u) N N5 (v) # 0 and uv € E if and only if
Ny (u) NNy (v) # 0.

In this situation D is called a realization of (G, G,). Furthermore, the graphs G| and G, are called the competition
graph and common enemy graph of D, respectively. Competition graphs were introduced by Cohen [1] to study food
web models in ecology and have been studied by various authors (cf. eg. [2,4,8-10]).

Since every poset P = (¥, <) corresponds to a digraph D = (V,A4) such that u < v for u,v €V if and only if uv € A,
a pair of graphs is bound polysemic only if it is competition polysemic. In this sense competition polysemy generalizes
bound polysemy. An unlabeled version of competition polysemy was studied in [5] (see also the corresponding comments
in [11]).

In the next section we prove a characterization of competition polysemic pairs. In Section three we consider special
cases of competition polysemy and prove a characterization of the connected graphs G for which there exists a tree T
such that (G, T) is competition polysemic.

2. A characterization of competition polysemy

Tanenbaum derived his characterization of bound polysemic pairs of graphs (Theorem 15 in [11]) from the charac-
terization of upper bound graphs due to McMorris and Zaslavsky [7]. We adopt the same approach and start with the
following characterization of competition graphs due to Dutton and Brigham [2] (cf. also [4,9]).

Theorem 2.1 (cf. Dutton and Brigham [2]). 4 graph G = (V,E) is the competition graph of some digraph if and only if
there exists an edge clique cover € ={Ci,C,...,Cp} of G with p < |V]|.

If 4 ={C.C,...,C,} is an edge clique cover of G with p < |V|, then we can choose a set of p different vertices
R ={v,v2,...,v,} C V. We call R a set of distinct representatives of the cliques in 4. (Note that—par abus de
langage—we do not require v; € C; for 1 <i < p.)

We proceed to our main result in this section.

Theorem 2.2. A pair (G1,G>) of graphs with Gi =(V,E1) and G, =(V,E») is competition polysemic if and only if there
exist edge clique covers €, ={Ci,1,Ci2,...,Ci.,} of G\ and € = {C>.1,Capn,...,Caq} of Gy for which there exist sets
of distinct representatives Ry = {v1,1,01.2,...,01,p} and Ry = {v2,1,022,...,024}, Le. |Ri| = p,|Ra2| =g < |V|, such that

(1) v2,; € Cyj if and only if vi; € Ca,
(i) if C1iNCy; # 0, then there is some 1 <1< q such that vy ;,v1; € Co and
(iii) if Co,i N Coj # O, then there is some 1 < [ < p such that vy;,v2; € Cy .

Proof. First, we assume that (G),G,) with G| = (V,E)) and G, = (V,E>) is competition polysemic with realization
D = (V,A4) and prove the existence of %, %>, Ri and R, as in the statement of the theorem.

Let V={v1,02,...,v,} and for 1 <i < n let v;=vy,=0;, C1,;=N;, (v1,;) and Ca; =N} (v2,;). Clearly, u,v € Cy; =N}, (v1,;)
holds for u,v € V with u # v and 1 <i < n if and only if vi; € N (u) NN (v) or equivalently uv € E;. This implies that
% ={Cu.1,C12,...,C1,} is an edge clique cover of Gi. By symmetry, > ={C>.1,C22,...,C2,} is an edge clique cover of
G». Furthermore, v2; € C1,;=N}, (v1,;) holds if and only if v; ; € Co; =N (v2,;) which implies (i). Finally, if C1,NCy; # 0,
then there is some 1 < / < n such that vy, € Ci,;NCi,;=Np (v1,;) NNy (v1,;). This implies vy ;,v1,; € N (v2,1) = C,; which
implies (ii) and, by symmetry, also (iii). This completes the first part of the proof.

Now, let (Gi,G>) be a pair of graphs with G; = (V,E;) and G, = (V,E,) and let €1, %, R; and R, be as in the
statement of the theorem.

Let the digraph D have vertex set ' and arc set A = A; U A, where

Ay ={uvjueCr i1 <i<pt and A= {vulucC;1 <j<gq}.

We prove that (G, G>) is competition polysemic with realization D.

Let uv € E, for u,v € V with u # v. Since % is an edge clique cover of G, there is some 1 < i < p such that u,v € Cj ;.
This implies that uvy;, 001, € 41 and v1; € N (1) NN () # 0.

Now, let x € N (u) NN (v) # 0 for u,v € V with u # v. We have that ux,ox € 4; U 4.

If ux,ox € 4y, then x = v, and u,v € Cy; for some 1 <i < p. This implies that uv € Ey. If ux € A, and vx € 4, then
x=uvy; and u€ Cy; for some 1 <i< p and v=1,; and x =v;; € C5; for some 1 <i < g¢. Condition (i) implies that
v=1y; € Cy;. Thus, u,v € Ci,; which implies that uv € E,. Similarly, if wr € A, and BCEA[ we obtain uv € E;. Finally, if
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ux, 0x € A, then u=uv,;, x € Cas, v=1,; and x € C; for some 1 < i,j < ¢ with i # j. Since x € Co;NC,,; # (0, Condition
(iii) implies that there exists some 1 </ < p such that vy;,v2,; € Cy;. Thus, v2,;02; =uv € E;. Hence, in all cases we have
uv€E.

We obtain that uv € E; for u,v €V with u # v if and only if Nj(u) N Ni(v) # ( which means that G, is the
competition graph of D. By symmetry, G is the common enemy graph of D and hence (Gi, G») is competition polysemic
with realization D. This completes the proof. [

We want to point out that it is straightforward but tedious to derive Tanenbaum’s characterization of bound polysemic
pairs of graphs (Theorem 15 in [11]) from Theorem 2.2.

3. Special cases of competition polysemy

In Section 4 of [11] Tanenbaum investigates graphs G such that (G, H) is bound polysemic, and H = G or H is the
complement G of G or H is a complete graph K, or H is a tree. The analogous problems for competition polysemy are
more complicated. For example, Tanenbaum shows that (G, G) is bound polysemic if and only if the vertex set of G is
the disjoint union of cliques (cf. Theorem 8 in [11]). The following lemma shows that the graphs G such that (G, G) is
competition polysemic cannot be characterized by forbidden induced subgraphs.

Lemma 3.1. Let G=(Vg,Eq) be a graph. There exists a graph H=Vu,En) of order at most |Eg| such that (GUH, GUH )
is competition polysemic where GUH = (Vg U Vy,Eg U Ey) and Vo N Vy = (.

Proof. Let 4={Ci,(>,...,C,} be an edge clique cover of G=(Vg, Eg) such that p is minimum. Since {{u, v}|uv € Eg} is
an edge clique cover of G, we obtain that p < |Eg|. Let D=(Vp,4p) be the digraph with vertex set Vp=VsU{v1,v2,...,0,},
where Vg N {v1,02,...,0,} =0, and arc set

P
Ap = U{@,UTHWE Cl}

i=1

Let G1 = (Vp,E1) and G, = (Vp,E>) be the competition graph and common enemy graph of D, respectively. Since
Njy (v) = N} (v) for every vertex v € Vp, we have G| = Ga.

For u,v € Vg with u # v we obtain that uv € E¢ if and only if u,v € C; for some 1 <i < p if and only if v; € Njj (u) N
Nj(v) if and only if uv € E;.

For u€ Vg and v € {v1,v2,...,v,} we obtain that N7 (u) N Nj(v) =0 and hence uv & E). Let H = (Mp\ Vs, E1\Eg).
Then, H has p < |Eg| vertices and G| = G, = G U H. This completes the proof. [J

Another result of Tanenbaum is that (G, G) is bound polysemic if and only if G has just one vertex (cf. Theorem 10
in [11]). We will now present graphs G of any order n > 2 such that (G, G) is competition polysemic.

Lemma 3.2. For n =2 the pairs (Kl,,,,l,lzl,,,,l) and (Kn,Kn) are competition polysemic where K, ,—\ and K, denote
the star and the edgeless graph of order n, respectively.

Proof. Let V = {vi,v2,...,v,} and E = {vjv;|2 <i <n} and let G = (V,E) and H = (V,(). Clearly, G = K, ,— and
H=~K,.

Furthermore, let Ag = {viv, v |2 <i < n} and Ay = {viv1} U {o1v;, |2 <i < n}. It is straightforward to verify that
the pair (G, G) is competition polysemic with realization D = (V,A¢) and that the pair (/,H) is competition polysemic

with realization Dy = (V,An). U

Tanenbaum shows that for any graph G of order n the pair (G, K,) is bound polysemic if and only if G is an upper
bound graph that contains a vertex of degree n— 1 (cf. Theorem 11 in [11]). We have just seen in Lemma 3.2 that (K, K,)
is competition polysemic, which shows that the existence of a vertex of degree n — 1 is not necessary for competition
polysemy with K,,.

Our main result of this section generalizes Tanenbaum’s characterization of graphs G such that (G, T') is bound polysemic
for some tree 7 in the case of connected graphs. Tanenbaum showed that (G, T') is bound polysemic for some tree 7 if
and only if G is complete and T is a star (cf. Theorem 12 in [11]).
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Theorem 3.3. Let G=(V,Eg) be a connected graph. There is a tree T=(V,Er) such that (G, T) is competition polysemic
if and only if

(i) at most one block of G is not complete,
(ii) every cutvertex of G lies in exactly two blocks of G and
(iii) if some block of G is not complete, then the vertex set of this block is the union of two cliques of G that have
exactly two common vertices and these vertices lie in no other block of G.

Proof. First, we assume that (G, T) is competition polysemic with realization D where G = (V, E¢) is a connected graph
and 7= (V,Er) is a tree.

Let V={v1,02,...,0,} and for 1 <i < n let v1;=vs,=0v;, C1;=N;, (v1,;) and Co; =N} (v2.:). Let 61={C1,1,C1,2,...,C1 .0}
and 4, = {C2,1,C22,...,Cap}. As in the proof of Theorem 2.2 is follows that %, %>, Ri and R, are as in the statement
of Theorem 2.2. (Note that we use double indices ‘1,i’ or 2,j" for vertices just in order to emphasize that a vertex
corresponds to a certain clique in €, or %, respectively.)

Since T is a tree, ¥, contains exactly n — 1 different cliques of cardinality 2 and one clique that is a subset of one of
the others. Without loss of generality let Cy1 C Cy».

If v2; € Ci,;NC1xNCy; forsome 1 <i<nand 1 <j <k <! <n,then vy ,vi, 1,1 € Cay, which implies a contradiction
to |Ca;| < 2. Hence, every vertex of G lies in at most two cliques of %;. We denote this property of G by (x).

If va5,00,€Cr,; NCy; for some 1 <i<j<n and 1<s<t<n, then vy;,01;€Cys N Cyy, wWhich implies that
{v1,i,01;} = Cos = Co, and hence {s,7} = {1,2}. Thus, for 1 <i < j <n we obtain

[CriNCij| <1, if Coy # {v1i,01,}, (1)

|CinCiyl =2, if Ci={vii,v,} 2)
If G contains a cycle that is not covered by a single clique in %, then there are ¢ > 2 cliques

Cij1»Cljys---,Clj, €6
such that Cyj; # Cy,, for every 1 <i<t—1and Cy # Ci; and ¢ vertices

Vs sVfys-nes Uy,

such that vy, € C1; N Cy,,, for every 1 <i<t—1and vy, € Cij, N Cry; with fi # f; for i # j.

We obtain, vy j;,v1,5,,, € Ca, 5, for every 1 <i <t—1and v1,,v1,, € Cy . Therefore vy j,v1,,., € Er forevery 1 <i <t—1
and V1,7, 01, € Er. Since T is a tree, we have t =2, C2>f1 = CZ,fz = {1)1’/],1)1,‘;2} and {fl,fz} = {1,2}

Hence, every cycle in G that is not covered by a single clique in %; is covered by the unique two cliques Cy;,,Ci
with Cz)l =Co = {D]\/],Ul,_/z},

This implies that every clique Ci; with v;; € C,; is the vertex set of a complete block in G. Furthermore, if some
block B of G is not complete, then Co; = C> and V(B) C C,;, UC, , with Coy ={v1,,v1,,}. Since every block of G
which contains two vertices of a clique contains the whole clique, we obtain that V' (B)= Ci ;, U C\ j,. Thus, at most one
block of G is not complete and Condition (i) holds.

Since every cutvertex of G lies in at least two blocks of G, we get, by (%), that every cutvertex of G lies in exactly
two blocks of G and Condition (ii) holds.

Now, let G contain a block B that is not complete. Then, V(B)=C; UC, and Co ={v1,,v1,),}. By (2), we obtain
that |Ci;, N C1j,| =2. By (%), the two vertices in Cy; UC), lie in no clique Ci; with i # ji, /> and in no block of G
besides B. Hence Condition (iii) holds. This completes the first part of the proof.

Now, let G = (V,Eg) be a connected graph such that the Conditions (i)—(iii) hold. Let S be the set of cutvertices
of G.

If one block of G is not complete, then let this block be By, let Cy and C; be two cliques of G such that V' (By)=CoUC,
and |Co N C| =2. Let {xp,x1} = Co N C; and define N; = C; for i =0, 1.

If all blocks of G are complete, then let xo be an arbitrary vertex in ¥'\S, let By be the unique block of G that contains
X0, let x; =xo and N; = V' (By) for i =0, 1.

It is straightforward to see that for 1 < i < |S| we can (recursively) choose vertices xi+1 € S\{x;|2 < j < i} and define
sets

Nisy = {x,—H} U <{u€ 14 | UXitr1 GEG}\ON})

Jj=0
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Fig. lLi<j<k<l

such that every set N; for 0 <i < |S| 4+ 1 is a clique of G and if i > 2, then N; is the vertex set of a block in G.
Furthermore, for i > 2 every cutvertex x; of G lies in N; and N; for some unique j < i. (See the left part of Fig. 1 for
illustration. )

Now, we define the digraph D = (¥, 4) with vertex set V' and arc set

A={x; | yeEN,O<j<|S|+ 1} U {uufuecV}.

(See the right part of Fig. 1 for illustration.)

Let £, and E, be the edge sets of the competition graph and the common enemy graph of D, respectively. Note, that
NF(x0)=Ng (x1)={x0,x1} and for every x € V'\{xo,x1} we have x € N;\{x;} and N (x)={x,x;} for some 0 <i < [S|+]1.
Thus, for u,v€V with u # v we obtain that uv € E, if and only if {u,0} = Nj(x) for some x€V if and only if
{u,v} = {x,x;} and x € N;)\{x;} for some 0 <i < |S|+ 1. Hence, we obtain that G» = (V,E,) is a tree, since for every
block B of G the subgraph G,[V(B)] induced by V(B) in G, is a star, if B is complete and a double star (=a tree of
diameter 3), if B= By and By is not complete.

Now, it remains to prove that G, = (V,E1) = (V,Eg) = G. Note that N, (x) = N; if x =x; for 0 <i<|S| + 1 and
Ny (x) ={x} if x € V\{x0,x1,...,X|s+1}. Let uv be an edge of G. If uv € E(By), then u,v € N; for some i € {0,1} which
implies that u,v € Ny (x;) for some i € {0,1} and thus uv € E1. If uv € E(B) for some block B # By, then B is complete
and contains at least one cutvertex. If i = min{2 < j < |S||x; € V(B)}, then u,v €N; = V(B) and u,v € Ny (x;) which
implies that uv € E;. This yields that Eg C Ej.

Conversely, let uv € E;. We have u,v € Ny (x) for some vertex x € ¥ with [N, (x)| = 2. This implies that x = x; and
u,v€N; for some 0 < j < |S| + 1. Since N, is a clique in G, we obtain that uv € Eg. Hence Eg = E| and the proof is
complete. [
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