

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 282 (2004) 251-255

www.elsevier.com/locate/disc

Note

Competition polysemy

Miranca Fischermanna, Werner Knobenb, Dirk Kremera, Dieter Rautenbachc

^aLehrstuhl II für Mathematik, RWTH-Aachen, 52062 Aachen, Germany

^bAm Schürkamp 21, 46509 Xanten, Germany

^cForschungsinstitut für Diskrete Mathematik, Lennéstrasse 2, 53113 Bonn, Germany

Received 31 May 2002; received in revised form 22 September 2003; accepted 26 November 2003

Abstract

Following a suggestion of Tanenbaum (Electron. J. Combin. 7 (2000) R43) we introduce the notion of competition polysemic pairs of graphs. A pair of (simple) graphs (G_1,G_2) on the same set of vertices V is called competition polysemic, if there exists a digraph D=(V,A) such that for all $u,v\in V$ with $u\neq v$, uv is an edge of G_1 if and only if there is some $w\in V$ such that $\overrightarrow{uw}\in A$ and $\overrightarrow{vw}\in A$ and $\overrightarrow{vw}\in A$ and $\overrightarrow{vv}\in A$ our main results are a characterization of competition polysemic pairs (G_1,G_2) in terms of edge clique covers of G_1 and G_2 and a characterization of the connected graphs G for which there exists a tree T such that G is competition polysemic.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Competition graph; Common enemy graph; Clique; Polysemic pair

1. Introduction

We consider finite simple graphs G = (V, E) with vertex set V and edge set E. A clique of G is the vertex set of a (not necessarily maximal) complete subgraph of G. An edge clique cover of G is a collection $\mathscr C$ of cliques such that for every edge $uv \in E$ some clique in $\mathscr C$ contains both vertices u and v. A block of G = (V, E) is a maximal 2-connected subgraph of G and a vertex $u \in V$ for which $G - \{u\} = G[V \setminus \{u\}]$ has more components than G is a cutvertex.

We also consider finite digraphs D=(V,A) with vertex set V and arc set A which may contain loops but no multiple arcs. An arc in D from u to v will be denoted by \overrightarrow{uv} and the positive (negative) neighbourhood of a vertex $v \in V$ is $N_D^+(u) = \{v \in V \mid \overrightarrow{uv} \in A\}$ ($N_D^-(u) = \{v \in V \mid \overrightarrow{vu} \in A\}$). For further definitions we refer to [3].

In [11] Tanenbaum introduced the notion of *bound polysemy*. He called a pair (G_1, G_2) of graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on a common set of vertices V bound polysemic, if there exists a reflexive poset $P = (V, \leq)$ on the set V such that for all $u, v \in V$ with $u \neq v$, $uv \in E_1$ if and only if there is some $w \in V$ such that $u \leq w$ and $v \leq w$ and $uv \in E_2$ if and only if there is some $w \in V$ such that $w \leq w$ and $w \leq v$.

In this situation the graphs G_1 and G_2 are called the *upper bound graph* and the *lower bound graph* of P, respectively. Upper bound graphs were introduced by McMorris and Zaslavsky in [7] (cf. also the survey [6]).

At the end of [11] Tanenbaum poses the problem of generalizing bound polysemy to *competition polysemy* using digraphs instead of posets. We will do so in the present paper. Consequently, we call a pair (G_1, G_2) of graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ on a common set of vertices V competition polysemic, if there exists a digraph D = (V, A) on the same

E-mail addresses: miranca.fischermann@amv.de (M. Fischermann), wk@werner-knoben.de (W. Knoben), kremer@math2. rwth-aachen.de (D. Kremer), rauten@or.uni-bonn.de (D. Rautenbach).

set of vertices such that for all $u, v \in V$ with $u \neq v$, $uv \in E_1$ if and only if $N_D^+(u) \cap N_D^+(v) \neq \emptyset$ and $uv \in E_2$ if and only if $N_D^-(u) \cap N_D^-(v) \neq \emptyset$.

In this situation D is called a *realization* of (G_1, G_2) . Furthermore, the graphs G_1 and G_2 are called the *competition graph* and *common enemy graph* of D, respectively. Competition graphs were introduced by Cohen [1] to study food web models in ecology and have been studied by various authors (cf. eg. [2,4,8–10]).

Since every poset $P = (V, \leq)$ corresponds to a digraph D = (V, A) such that $u \leq v$ for $u, v \in V$ if and only if $\overrightarrow{uv} \in A$, a pair of graphs is bound polysemic only if it is competition polysemic. In this sense competition polysemy generalizes bound polysemy. An unlabeled version of competition polysemy was studied in [5] (see also the corresponding comments in [11]).

In the next section we prove a characterization of competition polysemic pairs. In Section three we consider special cases of competition polysemy and prove a characterization of the connected graphs G for which there exists a tree T such that (G,T) is competition polysemic.

2. A characterization of competition polysemy

Tanenbaum derived his characterization of bound polysemic pairs of graphs (Theorem 15 in [11]) from the characterization of upper bound graphs due to McMorris and Zaslavsky [7]. We adopt the same approach and start with the following characterization of competition graphs due to Dutton and Brigham [2] (cf. also [4,9]).

Theorem 2.1 (cf. Dutton and Brigham [2]). A graph G = (V, E) is the competition graph of some digraph if and only if there exists an edge clique cover $\mathscr{C} = \{C_1, C_2, \dots, C_p\}$ of G with $p \leq |V|$.

If $\mathscr{C} = \{C_1, C_2, ..., C_p\}$ is an edge clique cover of G with $p \leq |V|$, then we can choose a set of p different vertices $R = \{v_1, v_2, ..., v_p\} \subseteq V$. We call R a set of distinct representatives of the cliques in \mathscr{C} . (Note that—par abus de langage—we do not require $v_i \in C_i$ for $1 \leq i \leq p$.)

We proceed to our main result in this section.

Theorem 2.2. A pair (G_1, G_2) of graphs with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is competition polysemic if and only if there exist edge clique covers $\mathcal{C}_1 = \{C_{1,1}, C_{1,2}, \dots, C_{1,p}\}$ of G_1 and $\mathcal{C}_2 = \{C_{2,1}, C_{2,2}, \dots, C_{2,q}\}$ of G_2 for which there exist sets of distinct representatives $R_1 = \{v_{1,1}, v_{1,2}, \dots, v_{1,p}\}$ and $R_2 = \{v_{2,1}, v_{2,2}, \dots, v_{2,q}\}$, i.e. $|R_1| = p, |R_2| = q \leq |V|$, such that

- (i) $v_{2,i} \in C_{1,j}$ if and only if $v_{1,j} \in C_{2,i}$,
- (ii) if $C_{1,i} \cap C_{1,j} \neq \emptyset$, then there is some $1 \leq l \leq q$ such that $v_{1,i}, v_{1,j} \in C_{2,l}$ and
- (iii) if $C_{2,i} \cap C_{2,j} \neq \emptyset$, then there is some $1 \leq l \leq p$ such that $v_{2,i}, v_{2,j} \in C_{1,l}$.

Proof. First, we assume that (G_1, G_2) with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is competition polysemic with realization D = (V, A) and prove the existence of \mathcal{C}_1 , \mathcal{C}_2 , R_1 and R_2 as in the statement of the theorem.

Let $V = \{v_1, v_2, \dots, v_n\}$ and for $1 \le i \le n$ let $v_{1,i} = v_{2,i} = v_i$, $C_{1,i} = N_D^-(v_{1,i})$ and $C_{2,i} = N_D^+(v_{2,i})$. Clearly, $u, v \in C_{1,i} = N_D^-(v_{1,i})$ holds for $u, v \in V$ with $u \ne v$ and $1 \le i \le n$ if and only if $v_{1,i} \in N_D^+(u) \cap N_D^+(v)$ or equivalently $uv \in E_1$. This implies that $\mathscr{C}_1 = \{C_{1,1}, C_{1,2}, \dots, C_{1,n}\}$ is an edge clique cover of G_1 . By symmetry, $\mathscr{C}_2 = \{C_{2,1}, C_{2,2}, \dots, C_{2,n}\}$ is an edge clique cover of G_2 . Furthermore, $v_{2,i} \in C_{1,j} = N_D^-(v_{1,j})$ holds if and only if $v_{1,j} \in C_{2,i} = N_D^+(v_{2,i})$ which implies (i). Finally, if $C_{1,i} \cap C_{1,j} \ne \emptyset$, then there is some $1 \le l \le n$ such that $v_{2,l} \in C_{1,i} \cap C_{1,j} = N_D^-(v_{1,i}) \cap N_D^-(v_{1,j})$. This implies $v_{1,i}, v_{1,j} \in N_D^+(v_{2,l}) = C_{2,l}$ which implies (ii) and, by symmetry, also (iii). This completes the first part of the proof.

Now, let (G_1, G_2) be a pair of graphs with $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ and let \mathcal{C}_1 , \mathcal{C}_2 , R_1 and R_2 be as in the statement of the theorem.

Let the digraph D have vertex set V and arc set $A = A_1 \cup A_2$ where

```
A_1 = \{\overrightarrow{uv_{1,i}} | u \in C_{1,i}, 1 \le i \le p\} and A_2 = \{\overrightarrow{v_{2,i}} u | u \in C_{2,i}, 1 \le i \le q\}.
```

We prove that (G_1, G_2) is competition polysemic with realization D.

Let $uv \in E_1$ for $u, v \in V$ with $u \neq v$. Since \mathscr{C}_1 is an edge clique cover of G_1 , there is some $1 \leq i \leq p$ such that $u, v \in C_{1,i}$. This implies that $\overrightarrow{uv_{1,i}}, \overrightarrow{vv_{1,i}} \in A_1$ and $v_{1,i} \in N_D^+(u) \cap N_D^+(v) \neq \emptyset$.

Now, let $x \in N_D^+(u) \cap N_D^+(v) \neq \emptyset$ for $u, v \in V$ with $u \neq v$. We have that $\overrightarrow{ux}, \overrightarrow{vx} \in A_1 \cup A_2$.

If $\overrightarrow{ux}, \overrightarrow{vx} \in A_1$, then $x = v_{1,i}$ and $u, v \in C_{1,i}$ for some $1 \le i \le p$. This implies that $uv \in E_1$. If $\overrightarrow{ux} \in A_1$ and $\overrightarrow{vx} \in A_2$, then $x = v_{1,i}$ and $u \in C_{1,i}$ for some $1 \le i \le p$ and $v = v_{2,j}$ and $x = v_{1,i} \in C_{2,j}$ for some $1 \le i \le q$. Condition (i) implies that $v = v_{2,j} \in C_{1,i}$. Thus, $u, v \in C_{1,i}$ which implies that $uv \in E_1$. Similarly, if $\overrightarrow{ux} \in A_2$ and $\overrightarrow{vx} \in A_1$ we obtain $uv \in E_1$. Finally, if

 $\overrightarrow{ux}, \overrightarrow{vx} \in A_2$, then $u = v_{2,i}, x \in C_{2,i}, v = v_{2,j}$ and $x \in C_{2,j}$ for some $1 \le i, j \le q$ with $i \ne j$. Since $x \in C_{2,i} \cap C_{2,j} \ne \emptyset$, Condition (iii) implies that there exists some $1 \le l \le p$ such that $v_{2,i}, v_{2,j} \in C_{1,l}$. Thus, $v_{2,i}v_{2,j} = uv \in E_1$. Hence, in all cases we have $uv \in E_1$.

We obtain that $uv \in E_1$ for $u, v \in V$ with $u \neq v$ if and only if $N_D^+(u) \cap N_D^+(v) \neq \emptyset$ which means that G_1 is the competition graph of D. By symmetry, G_2 is the common enemy graph of D and hence (G_1, G_2) is competition polysemic with realization D. This completes the proof. \square

We want to point out that it is straightforward but tedious to derive Tanenbaum's characterization of bound polysemic pairs of graphs (Theorem 15 in [11]) from Theorem 2.2.

3. Special cases of competition polysemy

In Section 4 of [11] Tanenbaum investigates graphs G such that (G, H) is bound polysemic, and H = G or H is the complement \bar{G} of G or H is a complete graph K_n or H is a tree. The analogous problems for competition polysemy are more complicated. For example, Tanenbaum shows that (G, G) is bound polysemic if and only if the vertex set of G is the disjoint union of cliques (cf. Theorem 8 in [11]). The following lemma shows that the graphs G such that (G, G) is competition polysemic cannot be characterized by forbidden induced subgraphs.

Lemma 3.1. Let $G=(V_G, E_G)$ be a graph. There exists a graph $H=(V_H, E_H)$ of order at most $|E_G|$ such that $(G \cup H, G \cup H)$ is competition polysemic where $G \cup H = (V_G \cup V_H, E_G \cup E_H)$ and $V_G \cap V_H = \emptyset$.

Proof. Let $\mathscr{C} = \{C_1, C_2, \dots, C_p\}$ be an edge clique cover of $G = (V_G, E_G)$ such that p is minimum. Since $\{\{u, v\} | uv \in E_G\}$ is an edge clique cover of G, we obtain that $p \leq |E_G|$. Let $D = (V_D, A_D)$ be the digraph with vertex set $V_D = V_G \cup \{v_1, v_2, \dots, v_p\}$, where $V_G \cap \{v_1, v_2, \dots, v_p\} = \emptyset$, and arc set

$$A_D = \bigcup_{i=1}^p \{\overrightarrow{wv_i}, \overrightarrow{v_iw} \mid w \in C_i\}.$$

Let $G_1 = (V_D, E_1)$ and $G_2 = (V_D, E_2)$ be the competition graph and common enemy graph of D, respectively. Since $N_D^+(v) = N_D^-(v)$ for every vertex $v \in V_D$, we have $G_1 = G_2$.

For $u, v \in V_G$ with $u \neq v$ we obtain that $uv \in E_G$ if and only if $u, v \in C_i$ for some $1 \leq i \leq p$ if and only if $v_i \in N_D^+(u) \cap N_D^+(v)$ if and only if $uv \in E_1$.

For $u \in V_G$ and $v \in \{v_1, v_2, \dots, v_p\}$ we obtain that $N_D^+(u) \cap N_D^+(v) = \emptyset$ and hence $uv \notin E_1$. Let $H = (V_D \setminus V_G, E_1 \setminus E_G)$. Then, H has $p \leq |E_G|$ vertices and $G_1 = G_2 = G \cup H$. This completes the proof. \square

Another result of Tanenbaum is that (G, \bar{G}) is bound polysemic if and only if G has just one vertex (cf. Theorem 10 in [11]). We will now present graphs G of any order $n \ge 2$ such that (G, \bar{G}) is competition polysemic.

Lemma 3.2. For $n \ge 2$ the pairs $(K_{1,n-1}, \bar{K}_{1,n-1})$ and (\bar{K}_n, K_n) are competition polysemic where $K_{1,n-1}$ and \bar{K}_n denote the star and the edgeless graph of order n, respectively.

Proof. Let $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{v_1v_i \mid 2 \le i \le n\}$ and let G = (V, E) and $H = (V, \emptyset)$. Clearly, $G \cong K_{1,n-1}$ and $H \cong \bar{K}_n$.

Furthermore, let $A_G = \{\overrightarrow{v_1v_i}, \overrightarrow{v_iv_i} | 2 \le i \le n\}$ and $A_H = \{\overrightarrow{v_1v_1}\} \cup \{\overrightarrow{v_1v_i}, | 2 \le i \le n\}$. It is straightforward to verify that the pair (G, \overline{G}) is competition polysemic with realization $D_G = (V, A_G)$ and that the pair (H, \overline{H}) is competition polysemic with realization $D_H = (V, A_H)$. \square

Tanenbaum shows that for any graph G of order n the pair (G, K_n) is bound polysemic if and only if G is an upper bound graph that contains a vertex of degree n-1 (cf. Theorem 11 in [11]). We have just seen in Lemma 3.2 that (\bar{K}_n, K_n) is competition polysemic, which shows that the existence of a vertex of degree n-1 is not necessary for competition polysemy with K_n .

Our main result of this section generalizes Tanenbaum's characterization of graphs G such that (G, T) is bound polysemic for some tree T in the case of connected graphs. Tanenbaum showed that (G, T) is bound polysemic for some tree T if and only if G is complete and T is a star (cf. Theorem 12 in [11]).

Theorem 3.3. Let $G=(V,E_G)$ be a connected graph. There is a tree $T=(V,E_T)$ such that (G,T) is competition polysemic if and only if

- (i) at most one block of G is not complete,
- (ii) every cutvertex of G lies in exactly two blocks of G and
- (iii) if some block of G is not complete, then the vertex set of this block is the union of two cliques of G that have exactly two common vertices and these vertices lie in no other block of G.

Proof. First, we assume that (G, T) is competition polysemic with realization D where $G = (V, E_G)$ is a connected graph and $T = (V, E_T)$ is a tree.

Let $V = \{v_1, v_2, \dots, v_n\}$ and for $1 \le i \le n$ let $v_{1,i} = v_{2,i} = v_i$, $C_{1,i} = N_D^-(v_{1,i})$ and $C_{2,i} = N_D^+(v_{2,i})$. Let $\mathcal{C}_1 = \{C_{1,1}, C_{1,2}, \dots, C_{1,n}\}$ and $\mathcal{C}_2 = \{C_{2,1}, C_{2,2}, \dots, C_{2,n}\}$. As in the proof of Theorem 2.2 is follows that \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 are as in the statement of Theorem 2.2. (Note that we use double indices '1, i' or '2, j' for vertices just in order to emphasize that a vertex corresponds to a certain clique in \mathcal{C}_1 or \mathcal{C}_2 , respectively.)

Since T is a tree, \mathcal{C}_2 contains exactly n-1 different cliques of cardinality 2 and one clique that is a subset of one of the others. Without loss of generality let $C_{2,1} \subseteq C_{2,2}$.

If $v_{2,i} \in C_{1,j} \cap C_{1,k} \cap C_{1,l}$ for some $1 \le i \le n$ and $1 \le j < k < l \le n$, then $v_{1,j}, v_{1,k}, v_{1,l} \in C_{2,i}$, which implies a contradiction to $|C_{2,i}| \le 2$. Hence, every vertex of G lies in at most two cliques of C_1 . We denote this property of C_1 by C_2 then C_2 then

If $v_{2,s}, v_{2,t} \in C_{1,i} \cap C_{1,j}$ for some $1 \le i < j \le n$ and $1 \le s < t \le n$, then $v_{1,i}, v_{1,j} \in C_{2,s} \cap C_{2,t}$, which implies that $\{v_{1,i}, v_{1,j}\} = C_{2,s} = C_{2,t}$ and hence $\{s, t\} = \{1, 2\}$. Thus, for $1 \le i < j \le n$ we obtain

$$|C_{1,i} \cap C_{1,j}| \le 1$$
, if $C_{2,1} \ne \{v_{1,i}, v_{1,j}\}$, (1)

$$|C_{1,i} \cap C_{1,j}| = 2$$
, if $C_{2,1} = \{v_{1,i}, v_{1,j}\}$. (2)

If G contains a cycle that is not covered by a single clique in \mathscr{C}_1 , then there are $t \ge 2$ cliques

$$C_{1,j_1}, C_{1,j_2}, \ldots, C_{1,j_t} \in \mathscr{C}_1$$

such that $C_{1,j_i} \neq C_{1,j_{i+1}}$ for every $1 \leqslant i \leqslant t-1$ and $C_{1,j_t} \neq C_{1,j_1}$ and t vertices

$$v_{f_1}, v_{f_2}, \dots, v_{f_t}$$

such that $v_{f_i} \in C_{1,j_i} \cap C_{1,j_{i+1}}$ for every $1 \le i \le t-1$ and $v_{f_i} \in C_{1,j_i} \cap C_{1,j_1}$ with $f_i \ne f_j$ for $i \ne j$.

We obtain, $v_{1,j_i}, v_{1,j_{i+1}} \in C_{2,f_i}$ for every $1 \le i \le t-1$ and $v_{1,j_i}, v_{1,j_1} \in C_{2,f_i}$. Therefore $v_{1,j_i}v_{1,j_{i+1}} \in E_T$ for every $1 \le i \le t-1$ and $v_{1,j_i}v_{1,j_1} \in E_T$. Since T is a tree, we have t = 2, $C_{2,f_1} = C_{2,f_2} = \{v_{1,j_1}, v_{1,j_2}\}$ and $\{f_1, f_2\} = \{1, 2\}$.

Hence, every cycle in G that is not covered by a single clique in \mathcal{C}_1 is covered by the unique two cliques C_{1,j_1}, C_{1,j_2} with $C_{2,1} = C_{2,2} = \{v_{1,j_1}, v_{1,j_2}\}$.

This implies that every clique $C_{1,i}$ with $v_{1,i} \notin C_{2,1}$ is the vertex set of a complete block in G. Furthermore, if some block B of G is not complete, then $C_{2,1} = C_{2,2}$ and $V(B) \subseteq C_{1,j_1} \cup C_{1,j_2}$ with $C_{2,1} = \{v_{1,j_1}, v_{1,j_2}\}$. Since every block of G which contains two vertices of a clique contains the whole clique, we obtain that $V(B) = C_{1,j_1} \cup C_{1,j_2}$. Thus, at most one block of G is not complete and Condition (i) holds.

Since every cutvertex of G lies in at least two blocks of G, we get, by (*), that every cutvertex of G lies in exactly two blocks of G and Condition (ii) holds.

Now, let G contain a block B that is not complete. Then, $V(B) = C_{1,j_1} \cup C_{1,j_2}$ and $C_{2,1} = \{v_{1,j_1}, v_{1,j_2}\}$. By (2), we obtain that $|C_{1,j_1} \cap C_{1,j_2}| = 2$. By (*), the two vertices in $C_{1,j_1} \cup C_{1,j_2}$ lie in no clique $C_{1,i}$ with $i \neq j_1, j_2$ and in no block of G besides B. Hence Condition (iii) holds. This completes the first part of the proof.

Now, let $G = (V, E_G)$ be a connected graph such that the Conditions (i)–(iii) hold. Let S be the set of cutvertices of G.

If one block of G is not complete, then let this block be B_0 , let C_0 and C_1 be two cliques of G such that $V(B_0) = C_0 \cup C_1$ and $|C_0 \cap C_1| = 2$. Let $\{x_0, x_1\} = C_0 \cap C_1$ and define $N_i = C_i$ for i = 0, 1.

If all blocks of G are complete, then let x_0 be an arbitrary vertex in $V \setminus S$, let B_0 be the unique block of G that contains x_0 , let $x_1 = x_0$ and $N_i = V(B_0)$ for i = 0, 1.

It is straightforward to see that for $1 \le i \le |S|$ we can (recursively) choose vertices $x_{i+1} \in S \setminus \{x_j \mid 2 \le j \le i\}$ and define sets

$$N_{i+1} = \{x_{i+1}\} \cup \left(\{u \in V \mid ux_{i+1} \in E_G\} \setminus \bigcup_{j=0}^{i} N_j \right)$$

Fig. 1. i < j < k < l.

such that every set N_i for $0 \le i \le |S| + 1$ is a clique of G and if $i \ge 2$, then N_i is the vertex set of a block in G. Furthermore, for $i \ge 2$ every cutvertex x_i of G lies in N_i and N_j for some unique j < i. (See the left part of Fig. 1 for illustration.)

Now, we define the digraph D = (V, A) with vertex set V and arc set

$$A = \{\overrightarrow{yx_j} \mid y \in N_j, 0 \le j \le |S| + 1\} \cup \{\overrightarrow{uu} \mid u \in V\}.$$

(See the right part of Fig. 1 for illustration.)

Let E_1 and E_2 be the edge sets of the competition graph and the common enemy graph of D, respectively. Note, that $N_D^+(x_0) = N_D^+(x_1) = \{x_0, x_1\}$ and for every $x \in V \setminus \{x_0, x_1\}$ we have $x \in N_i \setminus \{x_i\}$ and $N_D^+(x) = \{x, x_i\}$ for some $0 \le i \le |S| + 1$. Thus, for $u, v \in V$ with $u \ne v$ we obtain that $uv \in E_2$ if and only if $\{u, v\} = N_D^+(x)$ for some $x \in V$ if and only if $\{u, v\} = \{x, x_i\}$ and $x \in N_i \setminus \{x_i\}$ for some $0 \le i \le |S| + 1$. Hence, we obtain that $G_2 = (V, E_2)$ is a tree, since for every block B of G the subgraph $G_2[V(B)]$ induced by V(B) in G_2 is a star, if B is complete and a double star (=a tree of diameter 3), if $B = B_0$ and B_0 is not complete.

Now, it remains to prove that $G_1=(V,E_1)=(V,E_G)=G$. Note that $N_D^-(x)=N_i$ if $x=x_i$ for $0 \le i \le |S|+1$ and $N_D^-(x)=\{x\}$ if $x \in V\setminus \{x_0,x_1,\ldots,x_{|S|+1}\}$. Let uv be an edge of G. If $uv\in E(B_0)$, then $u,v\in N_i$ for some $i\in \{0,1\}$ which implies that $u,v\in N_D^-(x_i)$ for some $i\in \{0,1\}$ and thus $uv\in E_1$. If $uv\in E(B)$ for some block $B\neq B_0$, then B is complete and contains at least one cutvertex. If $i=\min\{2\le j\le |S|\,|\,x_j\in V(B)\}$, then $u,v\in N_i=V(B)$ and $u,v\in N_D^-(x_i)$ which implies that $uv\in E_1$. This yields that $E_G\subseteq E_1$.

Conversely, let $uv \in E_1$. We have $u, v \in N_D^-(x)$ for some vertex $x \in V$ with $|N_D^-(x)| \ge 2$. This implies that $x = x_j$ and $u, v \in N_j$ for some $0 \le j \le |S| + 1$. Since N_j is a clique in G, we obtain that $uv \in E_G$. Hence $E_G = E_1$ and the proof is complete. \square

References

- [1] J.E. Cohen, Interval graphs and food webs: a finding and a problem, Rand Corporation Document 17696-PR, Santa Monica, CA, 1968
- [2] R.D. Dutton, R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317.
- [3] R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Vol. 1, Elsevier, North-Holland, Amsterdam, 1995.
- [4] J.R. Lundgren, J.S. Maybee, A characterization of graphs of competition number m, Discrete Appl. Math. 6 (1983) 319-322.
- [5] J.R. Lundgren, J.S. Maybee, F.R. McMorris, Two-graph inversion of competition graphs and bound graphs, Congr. Numer. 67 (1988) 136–144.
- [6] T.A. McKee, F.R. McMorris, Topics in intersection graph theory, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.
- [7] F.R. McMorris, T. Zaslavsky, Bound graphs of a partially ordered set, J. Combin. Inform. System Sci. 7 (1982) 134-138.
- [8] F.S. Roberts, Food webs, competition graphs and the boxicity of ecological phase space, in: Theory and Applications of Graphs, Springer, New York, 1978, pp. 477–490.
- [9] F.S. Roberts, J.E. Steif, A characterization of competition graphs of arbitrary digraphs, Discrete Appl. Math. 6 (1983) 323-326.
- [10] D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269-280.
- [11] P.J. Tanenbaum, Bound graph polysemy, Electron. J. Combin. 7 (2000) R43, 12pp.